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Abstract1 

This paper proposes a controller technique for 
early stage congestion detection at the router buffer 
in the networks. The proposed technique extends the 
well-known Gentle Random Early Detection (GRED) 
algorithm. Unlike GRED, which relies on parameter 
settings, such as minthreshold, maxthreshold and 
double maxthreshold, in order to obtain a satisfac-
tory performance, the proposed technique depends 
on a fuzzy logic system which reduces the large de-
pendency on parameter settings. The proposed tech-
nique uses the average queue length and the delay 
rate as input linguistic variables for a fuzzy logic sys-
tem. The utilized fuzzy logic system produces a single 
output that represents a packet dropping probability, 
which in turn control and prevent congestion in early 
stage. The proposed technique and the well-know 
GRED and REDD1 algorithms were simulated using 
Java environment. The performance of the proposed 
technique has been evaluated and compared with re-
gard to various performance measures, which are: 
mean queue length, throughput, average queuing de-
lay, packet loss and packet dropping probability. The 
simulation results show that the proposed technique, 
in comparison with the existing algorithms, offers 
better performance results in terms of mean queue 
length, average queuing delay and packet loss. 
Therefore, this technique, generally, improves the 
network performance.  
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1. Introduction 
 

With the rapid growth of computer networks and In-
ternet technologies, managing network resources such as 
bandwidth allocation and queue spaces in various net-
works is essential. When the networks fail to manage 
and keep up its resources, unfair bandwidth sharing 
among the network connections occurs. In such a case, 
some network connections may engage queue spaces 
more than others. Subsequently, these connections will 
increase their transmitting rates compared to others, this 
is what so called aggressive connections [1, 2]. When the 
transmission rate of some aggressive connections in-
creases, the router queues built up, accordingly, router 
queues are overflowed and leads to unmanageable pack-
ets dropping. In such a case, the network is said to be 
congested. 

Congestion is one of the major problems that chal-
lenge network performance [3, 4]. Congestion occurs at 
the buffers of the network routers when the amount of 
incoming packets exceeds the available network re-
sources and the buffer can no longer handle all incoming 
packets [5]. Generally, congestion plays a major role in 
worsening computer network performance by increasing 
the packet dropping probability (Dp) and growing the 
packet loss probability (PL). In addition, congestion may 
lead to an increase in the mean queue length (mql) and 
the packets average queuing delay (D), congestion may 
also cause an unbalanced share among the network 
sources which successfully degrade the amount of pack-
ets passing through the buffer of the routers, namely, the 
throughput (T) [1]. 

Early work in controlling congestion comes up with 
Drop Tail (DT) technique [6, 7]. DT control congestion 
using a fixed router buffer size assigned based on the 
network administrator awareness. Generally, there are 
two scenarios in which the DT is executed. First, DT sets 
the router buffers to the maximum in order to obtain a 
high T. However, this causes a drawback of high D. Se-
cond, DT sets its router buffer to relatively small length. 
In such a case the network resources managed by DT 
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technique provide low D. However, this scenario ac-
commodated with several drawback of high PL, high Dp 
and low T. Finally, DT suffers also from other draw-
backs such as lockout phenomenon and full router buff-
ers. Generally, it has proven that DT degrades the per-
formance of network [8]. 

Later on, Active Queue Management (AQM) methods 
have been developed to overcome the aforementioned 
DT problems and provide sufficient resource manage-
ment [4, 9, 10]. Random Early Detection (RED), one of 
the most significant algorithms for congestion control, 
manages congestion before the router buffer overflows 
based on the computed average queue length (aql) and 
the calculated minimum and maximum thresholds values 
[8]. Generally, RED detects congestion as follows: when 
a packet arrives at the router buffer, RED computes aql 
of the underlying buffer and compares it with the mini-
mum and maximum threshold positions. An aql value 
that is smaller than the minimum threshold gives a sign 
for no congestion, thus, the packet is passed to the queue 
and no packet is dropped. If the aql value is between the 
two thresholds, the arriving packet is dropped probabil-
istically to alleviate congestion at the underlying buffer. 
Finally, when the aql is above the maximum threshold, 
all arriving packets are dropped at a Dp value equal to 
one. 

Based on the previously discussed scenarios, RED al-
gorithm provides acceptable performance when the traf-
fic load is steady. However, when the load increases 
suddenly, RED drops many subsequent packets which 
lead to reduce the network performance. In some other 
situation, because RED depends on the amount of traffic 
load in controlling congestion, the computed aql may 
become above the maximum threshold, and as a result, 
every arriving packet will be dropped. In addition to the 
previously discussed drawbacks, RED requires a supe-
rior parameter setting for the maximum and minimum 
thresholds, queue weight (qw) and maximum packet 
dropping probability (Dmax), to ensure achieving a satis-
factory performance. Parameter setting, however, is not 
necessary possible in actively changed networks. 

Generally, the need for accurate parameter settings 
and the expected unbalanced load in most networks 
made RED inefficient technique. Consequently, this pa-
per proposes a dynamic technique for congestion control 
based on the existing AQM algorithms and using Fuzzy 
Logic (FL) system that identifies congestion incipiently 
at router buffers. The purpose of the proposed technique 
is to improve the network performances when a high 
congestion situation occurs without the need for great 
parameter settings. 

Fuzzy logic, which is commonly known as Computa-
tional Intelligence (CI), is one of the most important 
tools that have been used to control methods in commu-

nication data networks, as fuzzy logic is effective alter-
native for heavily parameterized systems [11]. Fuzzy 
logic approach in classical control theory is used either 
to alleviate the system’s complex parameters in the 
mathematical model, or to simplify the model to some 
extent, in order to obtain some stability results, or to 
make model tractable for the controller design [12]. In  
addition, Fuzzy Logic Control (FLC) has been used  
successfully for controlling many systems in which  
analytical models are not easily obtainable or the model 
itself, if available, is too complex and possibly highly 
nonlinear [11]. 

For congestion control, in recent years, fuzzy logic 
has been used as a solution to several problems and has 
demonstrated the applicability of fuzzy logic to the 
problem of congestion control [13, 14]. FLC has been 
used due to its capability of qualitatively capturing the 
attributes of a control system based on observable phe-
nomena. Thus, if the FLC is designed with a good (intui-
tive) understanding of the system, the limitations due  
to the complexity of the system’s parameters can be 
avoided [11, 12]. 

Generally, the proposed technique uses Fuzzy Infer-
ence Process (FIP) as congestion detectors. FL is a set of 
mathematical expressions for knowledge representation 
[15-18]. The output of FL system, unlike the classical 
Binary Logic (CBL) [19], is a continuous truth value 
between (0-1) [15-18]. Fuzzy Logic Controller (FLC) is 
an expert system, implements a knowledge-based deci-
sion using some experience [16, 17].  FLC component 
process an input and produce an output by applying them 
into fuzzy linguistic rules. Generally, FLC has four steps 
(fuzzification, evaluation of the rules, aggregation the 
outputted rules, deffuzzification) [17, 20]. Those stapes 
are implemented and discussed in the rest of the paper as 
a basis for congestion control in the core of the proposed 
technique. 

The rest of the paper is organized as follows. Section 
2 presents previous related work. The proposed algo-
rithm is discussed in Section 3. Section 4 presents the 
simulation information. The results of the developed 
simulation are discussed in Section 5. Finally, conclu-
sions are stated in Section 6. 
 

2. Related Work 
 

Enormous algorithms for congestion control have 
been developed based on RED and other discrete-time 
queue analytical models to enhance the network per-
formance. Gentle Random Early Detection (GRED) [21] 
and REDD1 [22] are the most powerful algorithms in the 
literature [23-25]. GRED was proposed by Floyd to 
overcome RED’s limitations [10, 21, 26]. The main goal 
of the GRED algorithm, similar to RED, is to manage
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and control the congestion networks at the early stage. 
Although, GRED employs a similar approach used by 
RED in calculating the Dp, it depends on stabilizing the 
aql at a certain level based on three thresholds which are: 
minimum, maximum, and double maximum. Generally, 
GRED control congestion as illustrated in Figure 
1.GRED pseudo-code is described in Algorithm 1. 

Unfortunately, GRED does not perform well in dy-
namically change network. This is because it sets its pa-
rameters to specific values (i.e., parameterization), con-
sequently, when a heavy congestion suddenly occurs 
while aql is less than the minimum threshold, aql will 
take time to adjust, which will likely leads to buffer 
overflow during the adjustment process. In which case, 
no packets are dropped, although the GRED router buff-
er overflows. 

REDD1 was proposed, by Thiruchelvi and Raja [14], 
based on calculating the aql for every arriving packet, 
similar to RED and GRED. However, the dropping 
probability (DP) is calculated using FL as DP= {zero, 
low, moderate, high}. The value of Dp is determined us-
ing aql and PL, which are considered as two input lin-
guistic variables. These variables are linked to a fuzzy 
set. The fuzzy sets as, aql = {conservative, middle, ag-
gressive} and PL = {few, medium, a lot} The REDD1 
algorithm is aimed to offer fewer PL result than RED, 
also REDD1 decreases the RED algorithm dependency 
on its parameters, i.e. minimum and maximum thresh-
olds. 

Adaptive Fuzzy RED (AFRED) [27] developed a FL 
congestion control algorithm using a single input lin-
guistic variable (current queue length) to produce a sin-
gle output variable (dropping probability). The simula-
tion results of [27] showed that AFRED outperforms 
RED in terms of the queue length and throughput. 
Meanwhile, several algorithms have been developed us-
ing Fuzzy Logic (FL) in association with AQM, such as 
those proposed by Chrysostomou [18] and Chrysosto-
mou [28]. In general, several algorithms that implements 
association of FL and RED technique within TCP/IP, use 
different linguistic rules for each class of service. Most 
of these techniques use two input linguistic variables, 
which are current queue length and the change rate in the 
traffic load, and produce a single output linguistic vari-
able, which is the packet dropping probability. The re-
sults reveal that the association of FL and RED outper-
forms RED with regard to the optimization of queue size 
and throughput [28-31]. 

Unfortunately, all the aforementioned related methods 
fail to implement a congestion control that can effi-
ciently address the expected congestion cases encoun-
tered by the network resources, which in turn effect and 
waste the network resources. 

Figure 1. The single router buffer for GRED. 
 

3. The Proposed Technique 
 

The proposed technique for congestion control calcu-
lates the dropping probability based on the calculated aql 
and D. The proposed technique, unlike the existing tech-
nique, does not rely upon certain parameters settings; 
rather, this technique employs FIP as congestion detec-
tors. In addition, the proposed technique aims at obtain-
ing more satisfactory performance measure results when 
a heavy congestion occurs. Using Fuzzy logic, the pro-
posed technique calculates the dropping probability of 
each arriving packets based on two input linguistic vari-
ables (aql, delay (D)), as illustrated in Figure 2. The 
proposed technique is described in Algorithm 1 and its 
parameters are defined in Table 1. 
 
Algorithm 1: The Proposed Technique 
1. Begin  
2. SET C = -1, aql = 0.0 // Initialization stage 
3. FOR every arriving packet at a GRED router buffer, 

do //2nd Stage Calculate the aql for the arriving packet 
at the router buffer. 

4. Examine the queue status at the router buffer (e.g. 
empty or not 

5. IF, the queue at the router buffer = = empty, do 
6. Compute n, where n = q(current _ time - idle _ time) 
7. Set aql = aql x (1 - qw) n 
8. ELSE 
9. Set aql = aql x (1 - qw) + qw x q_instantaneous 
10. End IF 
11. END FOR 
12. Check the congestion status at the router buffer //3rd 

stage 
13. IF, aql < min_threshold, do 
14. SET D = 0 .0; // No packets have dropped 
15. SET C = — 1; 
16. ELSE IF min threshold < aql & & aql < max thresh-

old, do 
17. SET C = C +1;  

18. Calculate  maxD min

max mininit

aql threshold
D

threshold threshold

 



 

19. Calculate 
 

init

init

D

1 C DpD 
 

 

20. Drop arriving packet probabilistically in terms of its 

pD  value; 
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21. SET C = 0 ; 
22. ELSE IF max threshold ≤ aql & &aql < double max 

threshold, do 
23. SET C = C +1;  

24. SET    max
max

1 D max
D

maxinit

aql threshold
D

threshold

  
   

25. SET 
 

init

init

D

1 C DpD 
 

 

26. Drop arriving packet probabilistically in terms of its 
(

pD ) value; 

27. SET C = 0 ; 
28. ELSE IF aql ≥ double max threshold, do 
29. Drop every arriving packet with 

pD  = 1; 

30. SET C = 0 ;  
31. END IF 
32. IF GRED router buffer becomes empty, do // 4th stage 
33. SET idle time = current time ; 
34. END IF 
35. END 
 

 
Figure 2. FIP to find the packet dropping probability. 

 
Table 1. Adscription of parameter used. 

Definitions Description 
current time The current time. 
idle time The beginning waiting time at the router buffer. 

n 
The number of packets transmitted to the router 
buffer through an idle interval time. 

C 
A counter that represents the number of packets 
arrived at the router buffer and have not dropped 
since the last packet was dropped. 

Dp The packet dropping probability. 
Dinit The initial packet dropping probability. 
q_ instantaneous The instantaneous queue length. 
qw The queue weight. 
Dmax The maximum value of Dinit. 
q(time) The linear function for the time. 
Taql target level for the aql 
doublemaxthresh-
old is set to 2 x maxthreshold 
K  Capacity of the buffer 

The procedure for the proposed technique as illus-
trated in the figure is described as follows: 
 Step 1 (The fuzzification of the input crisp values (aql 

and delay)):  in this step the input crisp values are 
calculated to specify the membership degree for each 
crisp value. The fuzzy set range for each input lin-
guistic value, based on the universe of discourse, can 
therefore be obtained. A crisp value denotes a nu-
merical value placed on the universe of discourse.  

 Step 2 (Evaluation of the rule): in this step, the 
fuzzified input variables obtained//processed in the 
previous step is evaluated by applying them on the 
antecedent part of the rules. After every antecedent 
part is processed, the consequent part of every rule is 
then evaluated by obtaining the membership degree 
of the output variables. When multiple antecedent 
rules are found, the computation of all the antecedent 
rule parts is calculated using the fuzzy set operations 
[17, 32]. Then based on the results of the antecedent 
rules, the membership degree for every output lin-
guistic rule is achieved.  

 Step 3 (Aggregating all the output rules into a single 
output rule (fuzzy set)): Given that the degree of 
membership for each consequent rule part is obtained 
in the previous step, the combination of them into a 
single output rule is implemented in this step. This 
single output rule is called the single fuzzy set. The 
input for this step is a list of membership values for 
the output consequent rules and the output of this step 
is a fuzzy set for every output variable. 

 Step 4 (Defuzification): the final step of the FIP gen-
erates a crisp value for each output linguistic variable 
based on its fuzzy set. One of the popular defuzifica-
tion techniques is the center of gravity (COG) method 
[33], which aims to find out the point located on the 
center of the aggregate fuzzy set for each output 
linguistic variable. Formally, the COG can be defined 
according to equation (1) [17], for further information 
refer to [17]. 

 
 

b
a S

b
a S

F S S
COG

F S

 



           (1) 

 
3.1 Fuzzy sets 

Each linguistic variable in the FLC is associated with 
fuzzy sets in GREDFL. The following sets depict the 
fuzzy sets for the input and the output linguistic vari-
ables: aql = {conservative, middle, aggressive}, D = 
{Little, Average, Long} and DP = {zero, low, moderate, 
high}. The fuzzy sets for each linguistic variable are 
chosen based on the behavior of their input linguistic 
variable. For example, if D input linguistic variable will 
be low, and this means average queuing delay for pack-
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ets is low. Either average or a long represent a medium 
or a large average queuing delay for packets, respectively. 
Therefore, little, average and a long are the behaviors of 
the D.  
 
3.2 Creating membership functions for GREDFL tech-
nique 

After the fuzzy sets are identified, the membership 
functions will be generated. Generally, the membership 
function may take several shapes based on the problem 
at hand. For computational simplicity, the membership 
function of the linguistic variables, aql and D, are often 
considered as triangular or trapezoidal shaped. In the 
proposed GREDFL technique trapezoidal has been used. 
The chosen membership functions of the linguistic in-
puts and output values in the GREDFL controller, is 
shown in Figure 3 and 4. The amount of overlapping 
between the membership functions’ areas is significant. 
The left and right half of the trapezoidal membership 
functions, for each linguistic value, are chosen to pro-
vide membership overlapping with adjacent membership 
functions. The overlapping of the fuzzy regions, repre-
senting the continuous domain of each control variable, 
contributes to a well-behaved and predictable system 
operation. Appendix A shows a scenario of how the 
memberships for both aql and D are created. 

The sum of the membership’s grades for an input val-
ue, which represents the linguistic values of a specific 
input variable, is always one. For the output variable, the 
membership functions at the outermost edges cannot be 
saturated for the GREDFL controller to be properly de-
fined. The basic reason for this is that in fuzzy-based 
decision-making processes we seek to take actions that 
specify an exact value for the controlled system’s input. 

As illustrated in Figure 3, the final value of aql is K, 
where K represents the size of the router buffer as illus-
trated in table 1. On the other hand, in Figure 4, the final 
value of D is 2K, this value comes from K/beta, where 
beta represents the probability of packet departure, 
which equals 0.5. 

Figure 5 displays the membership function of the Dp 
output linguistic variable. The assumption of member-
ship functions for the Dp linguistic variables are similar 
to those in [14]. The boundaries of membership func-
tions and fuzzy sets are chosen by domain experts in 
both FL and congestion control fields [17]. The consid-
eration of a membership function for the aql linguistic 
variable is given as follows: aql will be in a conservative 
fuzzy set when its value is between zero and a 0.25 of 
the system capacity. However, the aql will be in the 
middle fuzzy set when its value is between 0.2 of system 
capacity and 0.75 of system capacity. Finally, the aql 
will be in the aggressive fuzzy set when its value is be-
tween 0.7 of system capacity and the finite capacity of 

system. Figures 7, 8 and 9 are either trapezoidal or tri-
angular for simple computations [17]. 
 

 
Figure 3. The memberships function of aql, where K repre-

sents the system capacity. 
 

 
Figure 4. The memberships function of D. 

 

 
Figure 5. The memberships function of Dp. 

 
3.3 The rules in GREDFL 

In this section, the fuzzy logic, which captures human 
knowledge and experience about how to control conges-
tion, is set up. Choosing simplest Multiple Input Single 
Output (MISO) controller leads to avoid the exponential 
increase of the rule base and decrease the complexity of 
the controller, when the number of input variables in-
creases [12]. Generally, a good design of the rule-base in 
fuzzy logic is prepared based on two aims: First, com-
pleteness which means that all the conditions of the sys-
tem behavior should be taken into the consideration, i.e., 
all arrangements of the input variables should produce 

Cop
y R

igh
ts 



 International Journal of Fuzzy Systems, Vol. 16, No. 1, March 2014 
 

14 

an appropriate output values. Second, consistency which 
means that the rule base should not contain any illogical-
ity. A set of rules is inconsistent if there are at least two 
rules with the same antecedents-part (input) with differ-
ent consequent-part (output). However, to build the 
fuzzy rules, as shown in Figure 5, the input and output 
linguistic variables as well as all the fuzzy sets with their 
ranges on the universe of discourse must be known. 

The knowledge-base for the fuzzy controller which is 
generated from IF-THEN control rules has the following 
form:{ IF aql is conservative and D is average THEN Dp 
is zero}. Where aql and D denote the linguistic variables 
associated with the two controller inputs, Dp denotes the 
linguistic variable associated with the controller’s output. 
The fuzzy rules are determined empirically to obtain the 
control signal according to the congestion in the router 
buffer. This relationship between the inputs and the out-
put is mainly based on intuitive understanding and con-
siderations (using expert knowledge) of the concept of 
congestion control. For example, if the aql is aggressive 
and the D is long then the output should be high in order 
that the system can respond quickly. 
 
Table 2. The linguistic fuzzy rules of the proposed GREDFL 

algorithm based on aql and D. 

IF aql is conservative and D is little THEN Dp is zero  
IF aql is conservative and D is average THEN Dp is zero  
IF aql is conservative and D is a long THEN Dp is zero 
IF aql is middle and D is little THEN Dp is zero 
IF aql is middle and D is average THEN Dp is zero 
IF aql is middle and D is a long THEN Dp is low 
IF aql is aggressive and D is little THEN Dp is zero 
IF aql is aggressive and D is average THEN Dp is moderate 
IF aql is aggressive and D is a long THEN Dp is high 

 
Table 2 indicates that if the aql is in a conservative 

fuzzy set, whatever the fuzzy set that the D belongs to it, 
the Dp will be in a zero fuzzy set. In case that the aql is 
in a middle fuzzy set and the D is in either few or me-
dium fuzzy set, the Dp will be in a zero fuzzy set.  
However, if the D is in a lot fuzzy set, then the Dp will 
be in a low fuzzy set. Finally, if the aql is in an aggres-
sive fuzzy set, the Dp result depends on the D fuzzy set. 
Hence, if the D is in a few fuzzy set, then the Dp is in a 
zero fuzzy set, whereas if the D is in medium and a lot 
fuzzy sets, then the Dp is in moderate and high fuzzy 
sets, respectively. In addition, the FIP is the main com-
ponent in the GREDFL algorithm, which is used at each 
router buffer queue. The FIP employs two input vari-
ables (aql, D) to output a single output variable (Dp). At 
any time a packet arrives at the router buffer queue in 
GREDFL, the FIP uses as congestion detector and con-
troller at the router queues to derive the Dp result 
through four steps that mentioned above in Figure 5. The 
first step is fuzzification in which the FIP takes the input 
crisp values of the aql and D to obtain their membership 

degrees. Now, based on the returned membership de-
grees, the fuzzy set for each input linguistic variable is 
determined on the universe of discourse. In other words, 
the fuzzification step determines the area to which each 
input linguistic variable belongs to based on its mem-
bership degree. After the fuzzification step, the rule body 
(IF-part) gets evaluated by applying the membership de-
grees of the input linguistic variables in the IF-part to 
obtain the membership degree of the output linguistic 
variable. Based on the membership degree of the output 
variable, the area which the output variable belongs to, 
can be determined. In the third step the membership de-
grees of the THEN-part of the rules are aggregated into a 
single fuzzy set. The final step is defuzzification, where 
the single aggregate fuzzy set of the output variable is 
inputted, then using the COG method [34, 35], the out-
put crisp value for the Dp is calculated. 
 

4. Simulation 
 

GRED, REDD1, and the proposed GREDFL are sim-
ulated based on a discrete-time queue that uses slot as a 
unit of time [25, 36]. Each slot may involve packet arri-
val and/or departure. The compared algorithms are sim-
ulated by applying them in a network consisting of a 
single router buffer node. Notably, both packet arrival 
and departure are implemented in single mode .The 
scheduling mode is first-come-first-served. The GRED, 
REDD1, and GREDFL simulations are implemented in 
Java on an i7 processor machine with 1.66 GHz and 4 
GB RAM. In the conducted simulation, the probability 
of the arriving packets at the router buffer in a slot is 
denoted by α [36]. The probability of packet departure 
from the router buffer in a slot is denoted by β. Packet 
arrivals can be modeled using a Bernoulli process, 
whereas packet departures can be modeled using a geo-
metrical distribution. Using geometrical distribution, 
packet inter-arrival times and service times are estimated 
to the values 1/ α and 1/β, respectively. 
 
5. Performance Evaluation Results of the Fuzzy 

Logic Controller Algorithms 
 

In this section, the proposed FLC algorithm 
(GREDFL) has been compared with GRED and 
REDD1algorithms according to different performance 
measures (mql, T, D, PL, Dp) to identify which algorithm 
offers the most satisfactory performance measure results. 

For the parameter settings, GRED, and REDD1 are in-
itiated using identical parameters at most. To create 
congestion and non-congestion scenarios at the buffer, 
the probability of packet arrival was set to several values; 
each value tends to create a congestion or 
non-congestion status. The buffer size room of 20 pack-
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ets was used to detect congestion at small buffer sizes. 
The total number of slots used in the experiments was 
2000000. This value allows the incorporation of accurate 
performance measures and encapsulates a period is ter-
minated when the system reaches a steady state. The 
performance measure results of compared algorithms are 
obtained by running the algorithm simulations ten times 
with various random seeds, then taking the mean of the 
ten results. This ten runs due to remove the bias for any 
run results. The compared algorithm simulations imple-
mented by a Java environment on a core 2 duo Centrino 
with 1024 MB RAM. 
 
5.1 Mean queue length, throughput, and delay 

Table 3 illustrates the output performances of RED, 
REDD1, and GREDFL using different probabilities of 
packet arrivals. The mql and D results for proposed 
GREDFL algorithm and all algorithms are identical up to 
certain value of the probability of packet arrival (e.g., 
0.33).  In such a low probability value, there is no con-
gestion at their router buffers when the packet arrival 
probability value is either 0.18 or 0.33. However, when 
the packet arrival probability value increases such as 
0.63, GRED algorithm give marginally small values for 
mql and D than either GREDFL or REDD1, additionally 
GREDFL slightly give smaller performance results than 
REDD1 with reference to mql and D. 

This is due to REDD1 and GREDFL router buffers 
lose marginally larger number of packets than GRED 
when congestion occurs (packet arrival probability value 
= 0.63). In cases where the packet arrival probability 
value increases to be 0.78, GREDFL offers better mql 
and D results than GRED and REDD1. Furthermore, at 
this probability value of packet arrival, congestion in-
creases, and GREDFL became better than other com-
pared algorithms with regard to mql and D results since 
it is stabilized its mql and D at values lower than those of 
GRED and REDD1. 

Moreover, when the value of packet arrival probability 
increases to be greater than 0.78 or 0.93, a heavy con-
gestion situation occurs, GREDFL sustains its mql and D 
results at values smaller than of those of GRED and 
REDD1. Consequently, GRED and REDD1 produce 
slightly higher mql and D results than those of proposed 

GREDFL when high congestion has occurred. The T re-
sults under different packet arrival probability values. 
After analyzing, the T of the algorithms give similar T 
results, whether the probability of packet arrival is set to 
a value lower or higher than the probability of packet 
departure value. In other words, the algorithms offer 
similar T whether or not a heavy congestion situation has 
existed.  
 
5.2 Packet loss and dropping probabilities 

The proposed GREDFL algorithm is compared with 
the GRED, REDD1 algorithms in terms of PL and Dp in 
this section. The goal of the conducted comparison is to 
show the quantity of packets loss and dropping at the 
router buffer in all compared algorithms. The packet loss 
probability (PL) is the probability of packet loss due to a 
buffer overflow, and packet dropping probability (Dp) is 
the probability of dropping packets before a router buffer 
has full. The performances of GRED, REDD1 and 
GREDFL algorithms in terms of PL and Dp are shown in 
Figure 6 and Figure 7, respectively.  

In Figure 6, the proposed GREDFL algorithm margin-
ally produces better and least PL performance results 
when the probability value of packet arrival is larger 
than the probability value of packet departure (existence 
of congestion). This is because the router buffer of 
GRED and REDD1 overflow more than that of 
GREDFL’s router buffer. Moreover, REDD1 router 
buffer loses fewer packets than GRED when high con-
gestion has appeared. When the value of packet arrival 
probability is smaller than the value of packet departure 
probability, all algorithms provide similar PL results 
since either a light congestion or no congestion situation. 

Figure 7 shows that the proposed GREDFL algorithm 
evidently drops more packets at the router buffer than 
either GRED orREDD1 algorithms when the probability 
of packet arrival is higher than the probability of packet 
departure, and this due to GREDFL router buffer loses 
fewer packets due to overflow than either router buffer 
of GRED or REDD1. Furthermore, GRED drops fewer 
packets than REDD1 since GRED loses packets due to 
overflow larger than those of REDD1. 

 
Table 3. mql, T and D performance results of GRED, EDD1and proposed GREDFL. 

 GRED REDD1 GREDFL 
α mql T D mql T D mql T D 

0.18 0.457 0.1787 2.5604 0.457 0.1893 2.5604 0.4452 0.1858 2.4462 
0.33 1.279 0.3277 3.903 1.279 0.3334 3.903 1.2118 0.3262 3.7244 
0.48 6.1005 0.4689 13.009 7.299 0.4733 15.395 6.1788 0.4670 13.226 
0.63 13.578 0.497 27.299 14.175 0.4996 28.372 14.094 0.4995 28.2131 
0.78 14.7936 0.49885 29.6551 14.4143 0.4998 28.8371 14.233 0.4998 28.4723 
0.93 14.9456 0.499 29.9316 14.7639 0.4998 29.5363 14.472 0.4998 28.9517 
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Figure 6. PL vs. probability of packet arrival. 

 

 
Figure 7. Dp vs. probability of packet arrival. 

 
6. Conclusion 

 
In this paper, an extension to the well-known GRED 

algorithm based on fuzzy logic controller has been pro-
posed. The purpose of the proposed extension are as fol-
lows: First, to obtain a more satisfactory performance 
with respect to the mean queue length (mql ) and the av-
erage queuing delay (D) when a heavy congestion occurs. 
Second, lose fewer packets by maintain the router buff-
ers protected from overflow when a heavy congestion 
occurs. Third, eliminate the dependency on parameters 
setting, as compared to the existing algorithm, relying 
upon a FIP as a congestion measure. 

The results of the proposed algorithm in comparison 
with GRED and REDD1) show that all the compared 
algorithms (GRED, REDD1 and the proposed algorithm) 
provide similar mql, T and D results when light conges-
tion accrues. Whereas, when the packet arrival probabil-
ity increases to a value near the packet departure prob-
ability value (0.63), GRED algorithm generates margin-
ally better result than those of the REDD1 and the pro-
posed algorithm. Furthermore, if the packet arrival 
probability value becomes near 0.78 and 0.93, the pro-
posed technique generates slightly better results than 
those of GRED and REDD1 algorithms regarding mql 
and D. The results also show that, all the compared algo-
rithms offer similar T in both congestion and no conges-
tion cases. Generally, the proposed algorithm marginally 

outperforms the GRED and REDD1 algorithms for PL 

when the value of the probability of packet arrival is 
larger than the value of the probability of packet depar-
ture or in the event of heavy congestion. Moreover, 
GRED and REDD1 drop fewer packets (Dp) at their 
router buffers than the proposed algorithm at such a case. 
 

Appendix A: Membership Functions 
 

if (InitialDelay>= 0.0 &&InitialDelay<= 2*Capacity / 4)  
{DelayStatus = 0; // Few} if (InitialDelay> 2*Capacity / 4 
&&InitialDelay<= 6 * Capacity / 8) {DelayStatus = 0; // Few}  

if (DelayStatus= 0) {  
if (InitialDelay>= 0.0 &&InitialDelay<= 2*Capacity / 4)  

{DelayDegree0 = 1.0;}  
if (InitialDelay> 2*Capacity / 4 &&InitialDelay<= 6 * Ca-

pacity / 8) {DelayDegree0 = (6 * Capacity / 8 - InitialDelay) / 
(6 * Capacity / 8 - 2*Capacity / 4); }}  

if (InitialDelay> 2*Capacity / 4 &&InitialDelay<=  
2*Capacity /2) {DelayStatus1 = 1; // Medium}  

if (InitialDelay> 2*Capacity / 2 &&InitialDelay<= 6 * Ca-
pacity / 4) {DelayStatus1 = 1; // Medium}  

if (InitialDelay> 6 * Capacity / 4 &&InitialDelay<= 14 * 
Capacity / 8) {DelayStatus1 = 1; // Medium}  

if (DelayStatus1 = 1) {  
if (InitialDelay> 2*Capacity / 4 &&InitialDelay<=  

2*Capacity /2) {DelayDegree1 = ( (InitialDelay - 2*Capacity / 
4) / (2*Capacity / 2 - 2*Capacity / 4) );}  

if (InitialDelay> 2*Capacity / 2 &&InitialDelay<= 6 * Ca-
pacity / 4) {DelayDegree1 = 1.0;}  

if (InitialDelay> 6 * Capacity / 4 &&InitialDelay<= 14 * 
Capacity / 8) {DelayDegree1 = (14 * Capacity / 8 - InitialDe-
lay) / (14 * Capacity / 8 - 6 * Capacity / 4) ;}}  

if (InitialDelay> 3 * Capacity / 2 &&InitialDelay<= 14 * 
Capacity / 8) {DelayStatus2 = 2; // Alot }  

if (InitialDelay> 14 * Capacity / 8 &&InitialDelay<=  
2*Capacity) {DelayStatus2 = 2; // Alot}  
if (DelayStatus2 == 2) { 
if (InitialDelay> 3 * Capacity / 2 &&InitialDelay<= 14 * 

Capacity / 8) {DelayDegree2 = ( (InitialDelay - 3 * Capacity / 
2) / (14 * Capacity / 8 - 3 * Capacity / 2) );}  

if (InitialDelay> 7 * Capacity / 8 &&InitialDelay<= 
2*Capacity) {DelayDegree2 = 1.0;}}  
 

Appendix B: Memberships Scenarios for aql 
 

if (AverageQueueLength>= 0.0  
&&AverageQueueLength<= Capacity / 5)  
{AverageQueueLengthStatus0 = 0; // Conservative}  

if (AverageQueueLength> Capacity / 5  
&&AverageQueueLength<= Capacity / 4)  
{AverageQueueLengthStatus0 = 0; // Conservative}  

if (AverageQueueLengthStatus0 == 0) {  
if (AverageQueueLength>= 0.0  
&&AverageQueueLength<= Capacity / 5)  
{AverageQueueLengthDegree0 = 1.0;}  
if (AverageQueueLength> Capacity / 5  

&&AverageQueueLength<= Capacity / 4)  
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{AverageQueueLengthDegree0 = ((Capacity / 4 - Aver-
ageQueueLength) / (Capacity / 4 - Capacity / 5) ) ; }}  

if (AverageQueueLength>= Capacity / 5  
&&AverageQueueLength< Capacity / 3)  
{AverageQueueLengthStatus1 = 1; // Medium}  

if (AverageQueueLength>= Capacity / 3  
&&AverageQueueLength<= Capacity / 2)  
{AverageQueueLengthStatus1 = 1; // Medium}  

if (AverageQueueLength> Capacity / 2  
&&AverageQueueLength<= 3 * Capacity / 4)  
{AverageQueueLengthStatus1 = 1; // Medium}  

if (AverageQueueLengthStatus1 == 1) {  
if (AverageQueueLength>= Capacity / 5  

&&AverageQueueLength< Capacity / 3)  
{AverageQueueLengthDegree1 = ( (AverageQueueLength - 
Capacity / 5) / (Capacity / 3 - Capacity / 5) );}  

if (AverageQueueLength>= Capacity / 3  
&&AverageQueueLength<= Capacity / 2)  
{AverageQueueLengthDegree1 = 1.0;}  

if (AverageQueueLength> Capacity / 2  
&&AverageQueueLength<= 3 * Capacity / 4)  
{AverageQueueLengthDegree1 = ( (3 * Capacity / 4 - Aver-
ageQueueLength) / (3 * Capacity / 4 - Capacity / 2) );}}  

if (AverageQueueLength>= (0.7 * Capacity)  
&&AverageQueueLength< 3 * Capacity / 4)  
{AverageQueueLengthStatus2 = 2; // Aggressive}  

if (AverageQueueLength>= 3 * Capacity / 4  
&&AverageQueueLength<= Capacity)  
{AverageQueueLengthStatus2 = 2; // Aggressive}  

if (AverageQueueLengthStatus2 == 2) {  
if (AverageQueueLength>= (0.7 * Capacity)  

&&AverageQueueLength< 3 * Capacity / 4)  
{AverageQueueLengthDegree2 = ( (AverageQueueLength - 
0.7 * Capacity) / (3 * Capacity / 4 - 0.7 * Capacity) ) ; }  

if (AverageQueueLength>= 3 * Capacity / 4  
&&AverageQueueLength<= Capacity)  
{AverageQueueLengthDegree2= 1.0;}} 
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